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We examine the ability of a feedforward Boolean network to learn to implement the parity function of
n input bits. It is shown, on the basis of exact enumerations, as well as theoretical analysis, that, in the
absence of teaching, the probability of implementing correctly increasing lengths of the truth table has a
staircase structure. This allows us to predict that, in the process of teaching the network, a sharp learn-
ing transition would take place at a fraction of teaching which goes to zero as n27" in the limit n — oo.

PACS number(s): 87.10.+e¢, 02.50.—r, 05.20.—y

I. INTRODUCTION

Feedforward neural networks often show a remarkable
ability to learn general rules from a small set of examples.
For example, Paternello and Carnevali [1] demonstrated
that a network consisting of 160 Boolean gates added
correctly all pairs of two eight-bit numbers after being
trained on only 224 random examples. Van den Broeck
and Kawai [2] showed that a network consisting of of 25
gates implemented correctly the parity (sum modulo 2) of
seven single-bit numbers after being trained on approxi-
mately 17% of the examples. They also studied networks
with varying number of gates NN, and the number of input
bits n, and showed that the learning transition shifts to
lower fractions of teaching and becomes sharper as » in-
creases. The learning transition thus appears to ap-
proach a genuine thermodynamic phase transition in the
large-n limit. In this paper we wish to examine the na-
ture of this phase transition and the underlying mecha-
nism.

II. STRUCTURE OF THE NETWORK

We use a network very similar to the one used in Refs.
[1] and [2]. However, we describe it briefly to set up our
notation. N Boolean gates are arranged in a linear feed-
forward manner. Each gate has two binary inputs and
one output, and therefore it can be one of the g types
where g <16. An input to a gate can come from the n in-
puts to the network or from the outputs of the previous
gates in the line. We allow configurations where both in-
puts to a gate may come from the same source. In Ref.
[1] all 16 gates were used. In Ref. [2] only eight of them
were used, i.e., AND, OR, XOR, ALL, and their negations.
The results are not very sensitive to whether all 16 gates
are used or only the eight listed above. We have restrict-
ed our work to g=1, 2, 6, and 8; g =28 means the eight
gates used in Ref. [2], g =6 means AND, OR, XOR, and
their negations, g =2 means XOR and its negation, and
g =1 means XOR only.

III. EXACT ENUMERATIONS

A. Probability landscape

Although exact enumerations of even small networks
are very time-consuming they provide valuable informa-
tion and serve to caution us against straightforward ap-
plication of Monte Carlo methods in larger systems. As
an illustration, we show in Fig. 1 the results of exact
enumerations of networks with n =4, N=3, and g =6.
We enumerate all configurations of the network and clas-
sify them according to the Boolean function they imple-
ment. Although 2'® Boolean functions are possible with
n =4, the N =3 network implements only 2160 functions.
As is well known, all the functions are not implemented
with equal probability but there are groups of functions
which are implemented with equal probability. We have
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FIG. 1. Probability of Boolean functions implemented by a
feedforward network with n =4, N=3, g=6. The x axis shows
the logarithm of the probability, and the y axis shows the loga-
rithm of the number N of Boolean functions having the same
probability.
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shown the probability of functions in a group versus the
number of functions in that group in a log-log plot. Fig-
ure 2 shows a similar graph for n =4, N=4, and g =6.
In this case a total of 9568 Boolean functions are imple-
mented. The two shortest vertical lines in Figs. 1 and 2
correspond to two groups of functions which are the easi-
est to learn by the network. The number of functions in
each group is only two. The two functions in each group
are mirror images of each other so the hamming distance
between them is the largest possible. The groups are rela-
tively isolated (no other vertical lines which are too
close). All these features contribute to the easy learning
of these functions. One of the functions in the highest
probability group corresponds to all bits being zero. In
the other group one function corresponds to the parity of
the input bits.

Comparisons of Figs. 1 and 2 show that as we go from
N =3 to 4, more groups come up. The number of func-
tions in new groups is high but their probability is very
low. Thus the contribution of additional Boolean func-
tions to the information entropy of the network is small.
This is in accordance with the Monte Carlo based result
[2] that the information entropy of the network is insensi-
tive to N for large N. It is important to note that as N in-
creases, the new functions which are implemented have
such low probability that they remain invisible to the
Monte Carlo methods unless the number of Monte Carlo
steps is also appropriately increased. In view of the limi-
tations of our computing resources (it takes nearly 60 h
on a PC486 to generate the data shown in Fig. 2), and the
difficulty of applying Monte Carlo techniques to systems
with hierarchical probability landscapes, we have
confined ourselves to exact enumerations of small net-
works.

B. Parity function

It is known [2] that for networks of a fixed size N, the
learning of the parity of n bits from examples improves
dramatically with increasing n. In this connection we
note that this can be true only for n <N +1. The upper
limit on # can be checked numerically and is easy to un-
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FIG. 2. Probability of Boolean functions implemented by a
feedforward network with n =4, N=4, g=6.

2963

derstand. If n is larger than N +1 then even a conven-
tional circuit of N XOR gates will not be able to imple-
ment the XOR function of n variables. Neural networks
have greater redundancy than the conventional chip and
therefore no neural net configuration will be able to im-
plement the parity of n bits if n >N+ 1. We have per-
formed exact enumeration at the limiting value n =N +1
as we expect to find the sharpest learning transitions in
this case. Indeed the numerical results bear out our ex-
pectation. We have carried out exact enumerations on
networks with n=2, N=1; n=3, N=2; n=4, N=3;
n=5, N=4; and n=6, N=5. In each case we took
g=1,2,6,8. Figure 3 shows the results for the case n =35,
N=4, g=2,6,8. The important features of Fig. 3 to be
discussed below are also shared by all other cases.

The parity of five bits may be characterized as a 32-bit
Boolean function where each bit represents the parity of
five input bits in a particular configuration. Various
configurations of five input bits can be conveniently la-
beled by a five-bit Boolean function or by its decimal
equivalent integer from O to 31. We label the 32 bits of
the parity function by the decimal equivalents of the
five-bit Boolean function representing the configurations
of the input bits. Thus the least significant bit represents
the parity of five input bits when they are all zero, and
the highest significant bit represents the parity of inputs
when they are all unity. With this notation the 32-bit
Boolean function desired to be implemented by the net-
work is BAAB ABB A where A stands for 0110 and B
stands for 1001. We enumerate all configurations of the
network which implement correctly L consecutive bits of
the above function starting from the least significant bit.
This yields the probability P(L) of implementing L con-
secutive bits of the parity function correctly by the net-
work. Figure 3 shows the graph of log;,P (L) vs L.

The graph in Fig. 3 has been obtained from a study of
the network in the absence of teaching. However, the
same graph can help in examining the ability of a net-
work to learn from examples. This can be illustrated by a
simple example. Suppose we confine ourselves to a g =2
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FIG. 3. Implementation of the 32-bit parity function by a
network with n =5, N =4, g=2,6,8. The y axis shows the loga-
rithm of the probability P of implementing L consecutive bits of
the Boolean function (x axis).
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network, and train it to learn the first 17 bits of the parity
function. Then this training will suffice to implement the
remaining 15 bits of the parity function faultlessly be-
cause there are no configurations of the network which
implement 17 bits but not all 32. The crucial feature of
Fig. 3 is that the probability decreases in sharp steps at
L=1,2,4,8, and 16 and stays constant between these
steps. This property is true for g =2 networks of all sizes
as far as we have checked numerically.

Writing the total number of bits in the parity function
as T=2", and L =IT, the probability changes in sharp
steps at /=4,%,4,... for g=2 networks. For higher
values of g, the overall structure remains intact although
the horizontal parts of the steps acquire some curvature
as shown in Fig. 3. Let p(g,7T) be the probability that a
network based on g types of gates implements all 7T bits of
the parity function correctly. Let p(g,L) denote the
probability that a network will implement all T bits
correctly after being trained on only L bits. It follows
from the staircase structure of p (g, L) that the probability
that a g =2 network implements L bits correctly and still
does not implement all the bits of the parity function is
equal to the probability that all L training bits fall in the
first half of the T-bit Boolean function. This probability
is (1)L, For g >2 also we can take this probability to be
(%)L approximately if we neglect the curvature of the
horizontal portion of the steps [3]. Thus we can write

- p(gT)
plg, T)+(1/2)F

- plgT)
plg, T+ (120~

The above formula was derived in Ref. [2] from a
different point of view and shown to give a good descrip-
tion of the learning curve of the network. In Fig. 4 we
have shown the above equation graphically for the case
n=5, N=4, g=8 which has p(g=8,T)=1.99X 1075,
For comparison, we have also shown in Fig. 4 the graph
of Eq. (3.1) for the case n=7, N=6, g=38, with
p=1.00X10"° . As n increases, p decreases and the
learning transition given by Eq. (3.1) becomes sharper
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FIG. 4. Learning of the parity rule by two networks with (i)
n=5, N=4,g=8;and (ii) n=7, N=6, g =8. The x axis shows
the number of bits taught, and the y axis shows the correspond-
ing probability of faultless learning.
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and shifts to lower values of teaching fraction /. The crit-
ical learning fraction /. may be defined as the teaching
fraction where p (g,L)=1. We get

log,op (g, T)
=208 o

3.2
¢ T log ;2 (3.2

IV. LEARNING TRANSITION

In this section we derive an analytic expression for
learning of the parity function of n bits by networks with
N=n—1and g=1, 2, 6, and 8. The analytic expression
initially arose as a conjecture based on numerical studies
of small-size networks, but reflection showed that it could
be deduced rather simply. Let us for convenience call
correct configurations those network configurations
which correctly implement the parity of n input bits. Let
F(g,N) denote the number of correct configurations in a
network with N gates where each gate can be of g types,
and n =N +1. We note that the correct configurations
with g =1 are those in which the first gate is fed by any
two input bits, and each successive gate is fed by the out-
put of its immediate predecessor gate and one of
the remaining unused input bits. Thus F(1,N)
=(N +1)NF(1,N —1) with N=2 and F(1,1)=2. The
second point to note is that in a correct configuration of
g =1 network if any two successive XOR gates are both
replaced by their inverse gates then the configuration still
implements the desired function. Thus the correct
configurations in a g =2 network can be obtained from
the correct configurations of a g =1 network by replacing
any two successive XOR gates by their inverses. This ex-
hausts all the correct configurations of the networks with
g>2,and n=N+1. Thus F(2,N)=2""!F(1,N). The
total number of configurations in a network is equal to
[IY-,(N+k)*g". Thus the probability P(g,N) of a ran-
dom configuration of the network being a correct
configuration is given by

N k
= f =
P(g,N) (N+1)k[:I1 Ntk or g
N 2
2|1 N k
= |=| F(N+1
S )kI:II N +k
for g=2,6,8. (4.1)
Note that P(g,N) is equal to p (g, T), which occurs in Eq.
(3.2). Thus we get
1 2 N +1
= Tlog,2 Nlogyo |~ |+ 1ogyo
k=N k
+2 1 _ .
2 logo | vy

In the limit N — o0, I, —0as N2,

V. DISCUSSION

We have analyzed the capacity of a feedforward neural
net to learn from examples the task of implementing the
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parity of n bits. We have restricted our analysis to net-
works with N =n —1 gates (nodes). This is not a serious
restriction in view of earlier work [2] which has estab-
lished that the learning transition becomes sharper and
shifts to a lower fraction of teaching as n increases.
However, the number of bits n cannot be increased
beyond N +1 if the network is to implement the desired
parity function of n bits. Thus our restriction to net-
works with n =N +1 means that we have studied net-
works where the learning transition is expected to be
sharpest and at the least value of the teaching fraction.
These expectations are borne out by our analysis as well
as exact enumerations on finite-size systems. Somewhat
surprisingly our analysis predicts that the teaching frac-
tion goes to zero as n2~ " (apart from logarithmic correc-
tions) in the limit » — o. The origin of this result lies in
the staircase structure of the probability landscape of the
parity function. The probability of implementing con-
secutive L bits of the T-bit parity function (7'=2") has a
staircase structure where each successive step is approxi-
mately half the height of its predecessor and twice as
long. Thus the T bits can be divided into n groups of ad-
jacent bits which constitute the horizontal portions of the
staircase. The condition that the teaching should lead to
faultless learning means that at least one bit from each of
the n groups of bits should be taught. Thus the learning
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threshold may be expected to scale directly in proportion
to n, and inversely in proportion to the total number of
bits 2”. Our analysis bears this out within logarithmic
corrections.

In retrospect, the analysis presented in this paper takes
some of the mystery out of the learning phenomena of
feedforward neural nets. The feedforward Boolean net-
work of logic gates emerges as a simple neural net which
is naturally programed to learn the parity of a large num-
ber of bits from a vanishingly small fraction of examples.
It is rather tantalizing to speculate if similar principles
operate behind the functions of more complex neural
nets. For example, there is a school of thought [4] that
the human brain is biologically programed to learn
language, i.e., the acquisition and use of language is facili-
tated by certain fundamental structural properties of the
brain. The simple example studied in this paper supports
the broad perspective that certain units (logic gates) ar-
ranged in certain structure (feedforward) can (in view of
underlying symmetries) learn all 2V manifestations of a
rule from only N examples. It is therefore plausible that
other units (neurons) in some other structure may possess
similar facility for learning language. It is our hope that
further study of very simple neural net models can sup-
port at least a rudimentary understanding of more com-
plex phenomena.
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